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FOREWORD

This report presents the results of the cooldown testing and the expanded inlet condition
testing of the RL10 engine for the Shuttle/Centaur program. The testing was conducted by Pratt
& Whitney, Government Products Division (P&W/GPD) of the United Technologies Corpora-
tion (UTC) for the National Aeronautics and Space Administration Lewis Research Center
(NASA/LeRC) under contract NAS3-22902.

This testing was conducted during the period from August 1984 to December 1985, with
other test programs. The testing effort was conducted under the direction of LeRC Space Flight
Systems Directorate with Mr. James A. Burkhart as Contracting Officer Representative. The
effort at P&W/GPD was carried out under the direction of Mr. Carl Ring, Assistant Project
Engineer, and Mr. Tom Vogel, Senior Test Engineer.
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INTRODUCTION

As part of the integration of the RL10 engine into the Shuttle Centaur vehicle, a
satisfactory method of conditioning the engine to operating temperatures had to be established.
This procedure, known as cooldown, is different from the existing Atlas Centaur due to vehicle
configuration and mission profile differences. This report describes the program and reports the
results of a Shuttle Centaur cooldown program conducted by Pratt & Whitney.

Mission peculiarities cause substantial variation in propellant inlet conditions between the
substantiated Atlas Centaur and Shuttle Centaur with the Shuttle Centaur having much larger
variation in conditions. A test program was conducted to demonstrate operation of the RL10
engine over the expanded inlet conditions.

As a result of this program the Shuttle Centaur requirements have been proven
satisfactory. Minor configuration changes incorporated as a result of this program provide
substantial reduction in cooldown propellant consumption.
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SECTION 1.0
BACKGRCUND

1.1 ATLAS CENTAUR COOLDOWN SEQUENCE

On the Atlas Centaur vehicle, the engine inlet valves are the only ones on the oxidizer and
fuel inlet lines. These valves are mounted immediately upstream of the oxidizer and fuel pumps.
Because the engine inlet valves are downstream of the inlet lines, these lines are cooled during
propellant tanking. Cooldown of the Centaur engines takes place after propellant tanking, and is
done in two stages.

Before launch, the fuel turbopump is cooled by flowing liquid helium through the pump,
entering at a fitting near the pump inlet and exiting through the interstage and discharge
cooldown valves. The oxidizer pump components are cooled by conduction with the fuel pump
housing. The turbopump is enclosed in insulating cover to aid this process. Neither the cooldown
duration nor the quantity of helium consumed are constraining factors. The only cooldown
constraints are that the fuel pump must be maintained below 64°R, and the LOX pump must be
below 270°R for the last five minutes before launch. Helium flow is stopped about eight seconds
before launch, and no cooling is provided during the boost phase. The period before launch after
the helium flow is stopped and the time during the boost phase of the mission amounts to
approximately 4.8 minutes, during which time the pumps warm slightly to about 120°R on the
fuel side, and 255°R on the oxidizer side.

Immediately after staging, the engine inlet valves are opened (known as prestart), and
propellants are allowed to flow through the fuel pump for five seconds and the LOX system for
nine seconds before engine start. This prestart flow consumes approximately 22 Ib of oxidizer,
and six lb of fuel per engine.

On the Atlas Centaur vehicle, the cooldown flow area which determines propellant
consumption on the oxidizer side is 0.34 in.?, and on the fuel side the fuel pump interstage and
discharge cooldown flow areas are 0.36 and 0.30 in.? respectively. Large cooldown areas are used
to minimize cooldown time because the first Centaur engine burn occurs during the ascent
trajectory where velocity losses must be minimized.

1.2 SHUTTLE CENTAUR COOLDOWN SEQUENCE

The Shuttle Centaur vehicle includes prevalves between the propellant tanks and the
engine inlet valves. Because of this, the inlet lines remain at the Shuttle cargo bay ambient
temperature of approximately 500°R until engine cooldown begins. The Centaur engines do not
undergo any cooling flow before liftoff and are not cooled until immediately prior to engine start,
after the vehicle has been released from the Shuttle bay. Due to the elevated metal temperatures
involved, propellants must be flowed for a much longer period of time than on the Atlas Centaur
flights. Because the propellants used to cool the engines and vehicle propellant inlet lines cannot
be replenished, it is very important to use the smallest amount possible. The time required is not
a significant factor because the vehicle is already in orbit. The goal of the cooldown program is to
minimize propellant consumption.

Two Shuttle Centaur launch vehicles have been configured: the G-Prime and the G. The
G-Prime vehicle requires one cooldown sequence and engine firing and is intended to boost
payloads into high energy interplanetary trajectories. The G vehicle requires two engine
cooldowns and firings and is intended to place payloads into a geosynchronous orbit.
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With both missions, propellants are maintained at saturated conditions during the initial
part of the launch sequence, and are pressurized shortly before initiation of cooldown, after the
vehicle has been released from the Shuttle.

At the onset of the cooldown program, three options existed for propellant pressurization
techniques. In all three cases, the propellants were maintained at saturated conditions during the
boost phase. After the boost phase, the three cases differ:

1. Before cooldown commences, the propellants are pressurized to a predeter-
mined level regardless of tank saturation pressure. Pressure is then
maintained within a range around the target pressure. This procedure results
in inlet boxes shown in Figures 1-1 and 1-2. These inlet boxes are known as
the absolute pressure inlet boxes.

2. Before cooldown commences, the propellants are pressurized to a predeter-
mined amount above saturation pressure. Pressure is then maintained
within a range around the target pressure. This procedure results in inlet
boxes which are shown in Figures 1-3 and 1-4. These inlet boxes are known
as the delta pressure inlet boxes.

3. Before cooldown commences, propellants are pressurized as in case 2,
however, the increase above saturation pressure is lower. These inlet boxes
appear in Figures 1-5 and 1-6, and are known as the low delta P inlet boxes.
In this case pressure is increased to case 2 levels just prior to engine start.

These inlet boxes, along with the ranges of engine and propellant duct temperatures,
determine the necessary engine/inlet duct cooldown durations and associated propellant
consumptions.

The RL10 Atlas Centaur cooldown deck was originally written to model the cooldown
characteristics of the RL10 engine at the Atlas Centaur conditions. The inlet ducts were not
included in the cooldown calculations because they were at their respective fluid temperatures at
engine prestart. The engine temperatures at start of cooldown are well below ambient because of
the ground prechill. The cooldown deck was matched to the cooldown characteristics of the RL10
in the Atlas Centaur configuration, based on existing test data.

To provide accurate predictions of cooldown rates and required cooldown durations for the
RL10 Shuttle Centaur configuration, inlet ducts were added to the simulation, along with
prevalves which are not present on the Atlas/Centaur vehicle. Two versions of the simulation
were prepared: one in the test configuration to compare to ground test data, which was used to
verify the analytical formulation of the prediction process, and the other in the flight
configuration to predict cooldown times and consumptions. The Atlas Centaur and Shuttle
Centaur configurations are shown in Figure 1-7.

The cooldown program was initiated to anchor the cooldown simulation to the
Shuttle/Centaur inlet duct/engine cooldown characteristics, to choose which inlet box is the
most advantageous for each mission, and to optimize the cooldown sequence and flow areas so as
to consume the smallest amount of propellant possible while cooling the engines sufficiently to
allow consistent start transient operation.
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SECTION 2.0
TEST CONFIGURATION

2.1 CENTAUR G AND G-PRIME TESTING

Flight conditions cannot be accurately represented on the ground due to gravity effects on
flow through a previously empty propellant duct.

Engine cooldown and firing tests were conducted to substantiate the analytical cooldown
model. The test stand was configured as shown in Figure 2-1. The prevalves were procured from
General Dynamics, and were the first set of prototype Centaur flight valves designed and built by
Fairchild. Figure 2-2 shows the G/D P/N 65-02400-3 oxidizer prevalve. Figure 2-3 shows the
insulated G/D P/N 65-02240-3 fuel prevalve. The propellant ducts were designed by Pratt &
Whitney to simulate the flight configuration as close as possible and still be compatible with the
E-6 test stand altitude capsule. Both propellant ducts use the same wall thickness, gimbal joints
and bellows section as the flight units. To be compatible with the existing oxidizer supply to the
capsule and the installed engine orientation, the oxidizer duct was made a mirror image of the
flight unit. To best simulate the fuel side Centaur Y-duct with a single engine, a 3-% in. duct
(diameter of individual leg) with a length equal to the common, plus one individual leg, was
made. Both ducts were instrumented with skin thermocouples along their lengths as shown in
Figures 2-4, 2-5, 2-6 and 2-7. A thermal analysis of the ducts installed in the E-6 altitude capsule
(0.6 psia) indicated that the half-inch foam and mylar insulation used on the Atlas Centaur ducts
would best simulate the Shuttle Centaur ducts in the hard vacuum of space. The insulated ducts
are shown in Figures 2-8, 2-9, 2-10 and 2-11.

The propellant ducts, prevalves and engine were installed in E-6 test stand. The stand
plumbing was modified to provide simulated oxidizer and fuel sumps. This was accomplished by
flowing propellant from the vacuum jacketed supply line past the closed prevalve and overboard
via & dump line. This configuration is shown schematically in Figure 2-1. The actual oxidizer side
is shown in Figure 2-12 and the fuel side in Figure 2-13. After initial testing it was determined
that the non-vacuum jacketed elbow upstream of the oxidizer prevalve, Figure 2-12, and the short
non-vacuum jacketed straight section upstream of the fuel prevalve, Figure 2-13, provided too
large a heat leak. This problem was resolved by adding foam insulation to the non-jacketed areas.

The helium supply to the prevaives was configured such that the prevalves and engine inlet
valves could be actuated independently. This allowed evacuation of the propellant ducts for
“waterhammer” testing. During the cooldown tests, each prevalve was opened simultaneously
with its respective inlet valve.

When testing reveaied that the cooldown areas should be reduced, plumbing changes were
made to close the ISCDV to the first step and to close the OFC bypass during their respective
cooldown periods. The plumbing changes consisted of moving the helium supply from the start
solenoid valve to the appropriate prestart solenoid valves. The resultant engine changes are
shown in Figure 2-14.
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Figure 2-3. Insulated Fuel Prevalve
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Figure 2-4. Duct Instrumented With Skin Thermocouples
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Figure 2-6. Duct Instrumented With Skin Thermocouples
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Figure 2-9. Insulated Duct
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Figure 2-13. Fuel Side
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2.2 FUEL PREVALVE FAILURE

The fuel prevalve failed to open fully on test number 50.01 during the XR102 test program.
The valve had been subjected to 59 cryogenic and 430 ambient cycles prior to the failure. The
valve was returned to Fairchild for analysis and repair. While waiting for the refurbished valve a
spool piece was installed in place of the valve so that cooldown testing of the oxidizer side could
be continued. Disassembly of the valve showed that the tang on the rotator ring had failed.

2.3 VERTICAL DUCT TESTING

Data from the cooldown testing indicated that propellant was traveling along the bottom
side of the horizontal ducts at cooldown flow rates. This gravity effect decreases the duct
cooldown efficiency, particularly on the oxidizer side. To help verify the predicted change in
cooldown efficiency that would be encountered under zero-G conditions, it was desirable to run
tests with the oxidizer supply duct vertical. However, the test capsule/test stand diffuser system
precludes the engine from operating in any orientation other than vertical. To run a vertical
oxidizer duct with this constraint would require adding an elbow which would cloud the test
results. It was decided to build a rig that oriented the oxidizer components in the desired
orientation and conduct oxidizer cold flows only. Figures 2-15, 2-16 and 2-17 show the rig
installed in the E-6 test capsule.
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e SECTION 3.0
PRELIMINARY COOLDOWN ANALYSIS

3.1 COOLDOWN CONFIGURATION AND PRESSURIZATION SCHEMES

-— Before testing began, cooldown cases were run using the Shuttle Centaur cooldown deck to

predict the best combination of inlet box, cooldown flow area, and inlet pressurization scenario to
- achieve the lowest possible propellant consumption. The cooldown times and propellant
consumptions presented in Figures 3-1 and through 3-10 are preliminary estimates which were
used only to determine the relative merit of the various cooldown configurations. Final cooldown
durations and resulting consumptions are presented in later sections.

Cooldown testing was done using a development RL10 engine, inlet ducts designed to
— closely resemble those of the Shuttle Centaur vehicle, and prevalves located at the inlet to each of
the ducts. All testing was done with evacuated cooldown valves which allowed engine firing to
verify proper engine cooldcwn.

Figures 3-1, 3-2, 3-3, and 3-4 show the required cooldown time and resulting propellant
consumption for simulations run using the delta pressure inlet box. The cases were run with fuel
interstage flow areas of 0.36 and 0.18 in.2, and Oxidizer Flow Control areas of 0.34 and 0.05 in.2.
o These cases show that for both the normal and reduced areas, point 1 on the inlet box, Figures 1-
~ 3 and 1-4, yields the longest cooldown time. To determine the maximum amount of propellant

use possible, cooldown simulations were run with inlet conditions of point 3 for the period of time
from point 1.

When using the absolute pressure inlet box, the maximum consumption resulted from
running with the inlet conditions at point 4 for the period of time determined from point 2.

. On the oxidizer side, the propellant flowrate is determined by the oxidizer flow control valve
effective area. Oxidizer flow control valve areas of 0.34 and 0.05 in.? were tested. The reduction in
the oxidizer valve area is achieved by closing the oxidizer flow control valve cooldown bypass at
the beginning of cooldown. A diagram of the flow control valve will be shown later in Figure 3-11.
On the Atlas Centaur vehicle, the hypass is kept open until engine start, when it is closed by
helium pressure from the start solenoid valve. To close the valve early, the bypass is connected to
the oxidizer prestart solenoid valve. This involves a minor helium line plumbing change on the
engine.

1

{

(

On the fuel side, the propellant flowrate is determined by the fuel pump interstage and

discharge cooldown valve effective areas. Two interstage cooldown valve flow areas of 0.36 and

— 0.18 in.2 were tested. On the Atlas/Centaur vehicle, the interstage cooldown valve is normally

open to a 0.36 in.? flow area during cooldown, and, at the engine start signal, is closed half way by

helium pressure from the start solenoid valve. The valve is then closed completely by fuel pump

discharge pressure during the start transient. To achieve the 0.18 in.? flow area, the interstage

valve is connected to the fuel prestart solenoid valve, allowing helium pressure to close the valve

half way during cooldown. Comparisons of cooldown consumption for oxidizer flow areas of 0.05

and 0.34 in.? and fuel interstage valve flow areas of 0.18 and 0.36 in.2 are made in Figures 3-1, 3-2,
3-3, and 3-4.
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Figure 3-11. Ozxidizer Flow Control and Purge Check Valuve

In addition to cooldown valve flow area changes, the effect of propellant pressurization was
also investigated. Cases were run with the cooldown prediction deck keeping the fuel and oxidizer
inlet temperatures constant, but varying inlet pressure from saturation pressure to the level
desired. The duration of unpressurized cooldown was varied from zero to twenty seconds. The
effect of the unpressurized flow duration was to slightly increase cooldown time and consumption
regardless of cooldown flow area. This is shown in Figures 3-5, 3-6, 3-7, and 3-8. Due to the
adverse effect of unpressurized cooldown, it was decided that engine cooldown would be
accomplished under pressurized conditions.

To determine the pressurization scenario to be used on the G-Prime flights, worst case
predictions were made using each of the three inlet boxes. The runs were done both with large
and small flow areas. It was found that the smaller flow areas produced universally lower
propellant consumptions when compared to the larger areas, and that of the cases run with the
smaller areas, the absolute pressure pressurization box yielded the lowest consumption as well as
the lowest cooldown time. The worst case consumption and the required cooldown times for the
three inlet boxes are shown in Figures 3-9 and 3-10 for both normal and reduced oxidizer and fuel
flow areas.

3.2 COOLDOWN DECK MATCHING

The initial series of cooldown tests was run to match the simulation deck to actual
cooldown data. Comparisons were made between fuel and oxidizer flowrate, engine oxidizer and
fuel inlet duct temperatures, and fuel and oxidizer pump temperatures.

In the tests with the flight weight inlet ducts, it was noticed that inlet temperatures on both
the fuel and oxidizer side varied with time, where the prevalve inlet temperature would start at
saturated temperature, and approach the desired inlet temperature as the duct cooled. This will
be shown later in Figure 3-41. Duct temperature profiles indicated that gas was being trapped
along the top of the ducts due to the one-G environment. This allowed hot oxygen and fuel vapor
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to travel backward against the flow and warm the incoming propellants. To accurately model
this, an inlet temperature profile was included in the simulation deck. After a test was made, the
temperature profile from the test was used as input to the simulation deck. in this way, the
simulation results could be compared directly to test results.

Fitting of the simulation deck to test data was completed during the first sixteen runs of the
cooldown program, which were cold flows done without any attempt to start the engine.
Comparisons of calculated and actual propellant flowrates and component temperatures are
shown in Figures 3-12 through 3-36. Figure 3-12 shows the comparison between calculated and
actual oxidizer flow for a cooldown run, while Figure 3-13 shows the same comparison for the fuel
side. The oxidizer plot shows close agreement between predicted and actual flowrate, while the
fuel side plot shows a difference during the first 20 seconds of flow. This discrepancy is due to the
effects of duct filling and the rising of warm hydrogen up the inlet ducts. Figures 3-14 through
3-36 show comparisons between predicted and actual metal temperatures. In these figures, the
square symbols mark prediction data, while the round symbols mark test data. The header
names, shown with different line types, refer to Figures 3-37 and 3-38 which show the locations
of the cooldown temperature probes.

In all figures, it can be seen that the predictions of duct temperatures agreed weil with test
data, while the predicted gimbal cooldown rate was slower than test data showed. This
discrepancy is due to the thickness of the gimbals and the locations of their thermocouples. The
gimbals were modeled as bulk masses with a small surface area available for cooling. The
predicted temperatures shown in the figures is the average temperature of the gimbals, while the
measured temperatures are taken at the gimbal flange, which cools faster than the body of the
gimbal. To get a true indication of the gimbal temperature, the thermocouple would have had to
be placed inside the gimbal, which was impractical. It is believed the predicted temperature
curves for the gimbals are representative of the actual gimbal average temperature. The tubular
portions of the ducts, because of their thin profile, had a skin temperature very close to their
average temperature which resulted in close agreement between the predicted and actual data.
The temperature probes for duct 4 on the fuel side could not be used, resulting in no test data
comparison for the predicted curve in Figure 3-34.

The oxidizer pump temperature probes are located on the skin of the oxidizer pump in
locations shown in Figure 3-39. Conduction calculations allowed the prediction of these skin
temperatures using the dimensions of the pump and the calculated pump internal temperatures.
The oxidizer pump temperatures, shown in Figures 3-21 through 3-24, show close agreement with
the test data. The fuel pump first stage temperature probe is imbedded in the pump housing,
which allows accurate measurement of the pump bulk metal temperature and close agreement
with predicted values. The second stage probe, because it is a surface probe, does not match well
with predicted results. The predicted second stage pump temperature is believed to be a good
representation of the pump bulk metal temperature.

A description of the cooldown deck is presented in Appendix A.

41



§

Pratt & Whitney

FR-19545-1
10—
1 ‘LOX0S016
2 XR101-4 Run 50.16 Shuttle Centaur Flight Duct C  X101045016
— WL Predicted Lox Flow
8 —e== WLOX Lox Flow from Run 50.16
]
s H-
Oxidizer
Fiow Rate - |
b
[sec HE
]
I
2HE
|
Aokl L
0 10 20 30 40 50 60 70 80 a0
Time from Prestart Signal - sec
FO 320307

Figure 3-12. Comparison of Predicted and Test Run LOX Flow Rate
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Figure 3-13. Comparison of Predicted and Test Run Fuel Flow Rate
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— 3.3 VERTICAL DUCT TESTS

To determine if the elevated oxidizer inlet temperature characteristic would be present in
—_ the Shuttle/Centaur on-orbit environment, a test rig was fabricated consisting of the flight
weight inlet ducts installed in a vertical position with an oxidizer pump/oxidizer flow control
valve assembly installed on the exit of the duct. By testing the assembly in this position, the
majority of the inlet duct was in a vertical orientation instead of the horizontal position present
when the ducts are installed on the engine. By installing the ducts in this way, the amount of
mixed phase oxidizer traveling back up the inlet duct and the gas trapped in the duct would be
reduced. A closer simulation of the on-orbit environment could then be made, determining
whether the prevalve inlet temperature profile would exist in flight.

Tests made with the oxidizer rig showed a reduced amount of inlet recirculation due to the
complete wetting of the inlet ducts, which resulted in a slightly increased cooling rate for both
_ the oxidizer inlet lines and the oxidizer pump. This implies that the cooldown times determined
o= from the test stand are conservative due to the elevated inlet temperature characteristic and gas
POEg trapped in the duct. The propellant recirculation present when cooling the horizontal duct
i sections will not be present in the zero-G environment due to the lack of a gravity induced
= pressure gradient.

Comparisons of component cooldown rates and inlet NPSP for tests of engine (horizontal
v duct) cooldown and LOX pump rig (vertical duct) cooldown are shown in Figures 3-40 through
3-55.

3.4 COOLDOWN CRITERIA
On the oxidizer side, three conditions must be met before the engine is ready to be fired:
—_ 1. Engine inlet NPSP must be 3.9 psia or higher.
2. The oxidizer flow control valve must be fully cooled to fluid temperature.

3. The ‘C’ location on the oxidizer pump inducer housing as shown in
- Figure 3-39 must be cooled below 290°R.

On the fuel side, two conditions must be met:
1. Engine NPSP must be 1.5 psia or higher.

2. The fuel pump second stage housing temperature (FSHT11) must be cooled
belcw 300°R.

3.5 RECOMMENDED FLIGHT COOLDOWN TEMPERATURE MEASUREMENTS

Oxidizer and fuel pump temperature and oxidizer and fuel inlet NPSP characteristics are
shown in Figures 3-56 and 3-57.
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Figure 3-49. Oxidizer Duct Wall Temperature — Gimbal 3
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Figure 3-53. Oxidizer Inducer Temperature Housing — Location B
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To insure verification of proper engine component cooldown, it is recommended that
temperature transducers be located at the ‘C’ thermocouple location on the oxidizer pump
inducer housing flange, and at the FSHT11 thermocouple location on the fuel pump second stage
housing. Figures 3-39 and 3-58 show the locations of the oxidizer and fuel pump temperature

transducers.

When engine testing is done, the temperature transducers used are P&W thermocouples,
whereas during flights, flight instrumentation temperature transducers will be used. Tests were
run comparing the flight instrumentation temperature transducer and the P&W thermocouple
used on the oxidizer pump housing. These transducers showed close agreement throughout the

operating temperature range.

Comparison of the P&W thermocouple and flight transducer response is made in
Figure 3-59.

3.6 WATERHAMMER TESTS

When the Shuttle/Centaur cooldown sequence is initiated, the engine prevalves and LOX
inlet valve will be opened simultaneously, with the fuel inlet valve being opened from 200 to 300
seconds later. Because the environment inside the empty inlet ducts will be a near vacuum, it was
considered that the propellants could enter the ducts rapidly and, upon reaching the engine inlet,
cause an overpressure condition due to waterhammer effects. To determine if this would occur,
tests were run with engine inlet valves opened and closed, and using prevalve opening rates from

12 to 0.5 seconds.

The worst case condition used was with engine inlet valves closed, and a prevalve opening
time of less than 0.5 second. In this extreme condition, the pressure rise experienced on the LOX

side was 3.5 psi, with a fuel side spike of 8.5 psi. These pressure increases were not large enough
to be considered hazardous. The fuel and oxidizer worst case inlet pressure characteristics are

shown in Figures 3-60 and 3-61.
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Figure 3-58. Fuel Pump Temperature Probe Location
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SECTION 4.0
CENTAUR G-PRIME TESTING

The absolute pressure inlet box had the lowest fuel and oxidizer consumption of the three
inlet boxes tested with the G-Prime inlet temperature variation. Because of this, the absolute
pressure inlet box was chosen for the G-Prime vehicle. All further analysis regarding the G-
Prime vehicle was done with the inlet boxes shown in Figures 1-1 and 1-2 in Section 1.0.

On both the oxidizer and fuel sides, cooling the engine requires the greatest period of time
when cooldown is done at point 4 on the inlet box. Cooldown limit tests were done on both the
fuel and oxidizer sides, with cooldown performed at point 4 in the inlet box. Cooldown times
tested and test results are shown in Tables 4-1 and 4-2.

Table 4-1. G Minimum Fuel Inlet Test Summary

Engine  Test No. _ C/D Time (sec)  Results

XR101 68.01 35 sec No-Go
XR101 70.01 45 sec Go
XR102 47.03 45 sec Go
XR102 48.01 40 sec Go
XR102 49.01 40 sec Go

0742C

Table 4-2. G Minimum LOX Inlet Test Summary

Engine  Test No. C/D Time (sec) Results Hsg Temp NPSP

XR101 66.01 195 sec No-Go 320 3.80
XR101 67.01 225 sec Go 225 6.0
XR102 47.03 225 sec Go 235 4.5
XR102 48.01 215 sec No-Go 260 3.7
XR102 49.01 220 sec Go 222 3.9
o742C

Results from cooldown tests including those shown in Tables 4-1 and 4-2 resulted in
required test stand cooldown times for the G-Prime inlet boxes of 220 seconds for the LOX side
and 40 seconds for the fuel side. These cooldown times allowed proper cooling of the engine
components at all locations within the G-Prime inlet boxes. Predicted cooldown times using the
cooldown program are 190 seconds for the oxidizer side, and 35 seconds for the fuel side.

The cooldown times recommended for use on the first Shuttle Centaur G-Prime flight are
the stand cooldown times plus an additional 10 percent margin. These times are 245 seconds for
the LOX side and 45 seconds for the fuel side. After the first flight, it is anticipated the cooldown
times can be reduced in response to observed cooling characteristics, which should be close to the
predicted values.

The above cooldown times and the resulting consumptions and impulse figures are shown
in Table 4-3.
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Table 4-3. G Cooldown Consumption and Impulse

Stand Cooldown Times + 10% Margm

45 sec Fuel 299 Ib 1607.5 lb-sec

245 sec Oxidizer 916 Ib 3947.0 lb-sec
Predicted Cooldown Times + 10% Margin

40 sec Fuel 240 b 13223 Ib-sec

210 sec Oxidizer 76.0 Ib  3287.3 Ib-sec
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SECTION 5.0
CENTAUR G-TESTING

The delta P pressurization scheme was selected for the G-vehicle. Depending on the
mission flown by the Shuttle, the G-mission Centaur vehicle may be in a low earth orbit
anywhere from five to approximately seventy hours before the payload can be boosted into
geosynchronous orbit. This uncertainty in coast time causes a large range of possible oxidizer
inlet temperatures due to the heating effects of the sun, and the cooling effects of the vehicle
hydrogen tank and the fact that the oxidizer tank does not have an orbit vent capability. This
temperature variation produces the elongated oxidizer inlet boxes shown in Figure 1-3. The fuel
inlet box does not suffer as dramatic an effect as seen in Figure 1-4 because it has a controlled
vent system.

Because of the large possible variation in inlet temperature, the maximum oxidizer
consumption levels are much greater than those associated with the earlier G-Prime inlet boxes.
The consumption levels calculated using maximum and minimum conditions were too high for
practical vehicle operation.

In an attempt to reduce the quantities of propellants consumed, a new scenario was
proposed. Instead of having a single cooldown time for the inlet box determined at the lower left
corner, the cooldown time would be dependent on the tank saturation pressure at the time of the
start of cooldown. In this way, the cooldown box would be effectively divided into an infinite
number of boxes with a width of 5 psia and a temperature variation of approximately 0.1°R. The
required cooldown time then decreases as the inlet saturation pressure increases, limiting the
amount of time that propellants would be flowed when cooling down at a point on the inlet box
with a high vapor pressure.

Depending on the mission the vehicle is required to fly, the oxidizer tank vapor pressure
could vary with the number of revolutions over the ranges shown in Figures 5-1, 5-2, and 5-3.
Using the worst case pressure variation of Figure 5-2, cooldown times and worst case
consumptions were calculated. Required cooldown time is dependent only on saturation pressure,
while the worst case propellant consumption is dependent on saturation and length of vehicle
coast (duct cooling).

Cooldown time required was determined to be 45 seconds on the fuel side and to range from
210 to 330 seconds on the oxidizer side depending on tank pressure. These times were determined
from cooldown testing. A record of cooldown testing is shown in Tables 5-1 and 5-2.

On the oxidizer side, a ten percent margin was added to the cooldown times determined by
testing to obtain recommended flight cooldown times. The cooldown deck was used to predict
required cooldown time. The predicted time will be used as the vehicle cooldown time if, as
anticipated, flight data verifies the cooldown model.

On the fuel side, like the oxidizer side, a ten percent margin was added to the cooldown time
determined from test data. This resulted in a recommended cooldown time of 55 seconds on the
fuel side for the first Centaur G flight. This cooldown time can then be adjusted downward
according to the data received from the flight.
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Figure 5-1. LOX Vapor Pressure — Centaur G Mission No. !

Plots showing oxidizer cooldown times required and oxidizer consumed are shown in
Figures 5-4, 5-5, 5-6, and 5-7. The recommended fuel cooldown time and the associated
consumption is shown in Table 5-3, along with the worst case oxidizer values.

The component cooldown trends are the same as with the G-Prime cases.

On the oxidizer side, as cooldown proceeds, the oxidizer flow control cools down first,
followed by the inlet NPSP increasing to an acceptable level, followed by the oxidizer pump
cooling. Cooldown can be monitored using the same thermocouple location on the oxidizer pump
inducer housing flange.

The fuel side also behaves in the same manner as with G-Prime cases, allowing the use of
the same fuel pump second stage housing temperature probe.

In addition to the first burn engine firing as in the G-Prime vehicles, G-vehicles will also
have a short cooldown prior to the second engine firing. The anticipated metal temperatures for
the second firing are much lower than first burn predictions. All metal parts will already be near
operating temperatures, and propellants will be flowed only long enough to fill the vehicle inlet
ducts and assure proper NPSP at the engine inlets. The recommended duration of these flows
and the propellants consumed are shown in Table 5-4. Because the cooldown times are so short,
there is little variation between best and worst case predicted values. The second burn
predictions are within Atlas Centaur experience.
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Figure 5-2. LOX Vapor Pressure Centaur G Mission No. 2
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Table 5-1. Centaur G Fuel Cooldown Test Summary

FPIPI1
Engine Test No. Pressure  C/D Time FPITIR  Results
XR101-4 74.01 25.8 55 39.1 No-Go
79.01 25.3 60 39.0 Go
82.01 25.2 60 38.3 Go
€8.01 29.2 35 39.5 No-Go
70.01 29.1 45 39.4 Go
XR102 47.03 29.1 40 39.2 Go
48.01 29.3 40 39.5 Go
49.01 29.1 40 39.4 Go
57.01 29.6 40 39.3 Go
58.01 31.2 40 39.4 Go
59.01 297 40 39.3 Go
60.01 31.1 40 39.3 Go
54.01 25.2 60 38.2 Go
62.01 25.4 60 38.2 Go
63.01 25.7 60 38.2 Go
64.01 254 60 37.9 Go
0742C
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Table 5-2. Centaur G LOX Cooldown Test Summary

FR-19545-1

Pump Inlet
Engine Test No. Pressure C/D Time NPSP Results
XR101-4 77.01 323 300 4.2 Go
79.01 32.4 275 4.1 Go
80.01 31.9 250 2.9 No-Go
XR102-3A 52.01 32.5 275 2.6 No-Go
53.01 32.2 275 3.0 No-Go
54.01 31.9 300 34 Go
61.01 325 300 2.6 No-Go (A-3-3 OFC)
62.01 32.5 330 3.2 Go (A-3-3 OFC)
63.01 32.4 300 3.4 Go (A-3-3 OFC Start Flow Increased)
56.01 55.2 180 3.5 No-Go
57.01 55.2 210 5.4 Go
59.01 55.0 210 3.0 Go (A-3-3 OFC)
64.01 43.6 255 35 Go (A-3-3 OFC)
XR105-3 33.01 43.7 255 3.7 Go
P642045 01.01 43.8 255 3.6 Go
0742C
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Table 5-3.

Centaur/Shuttle G

Pratt & Whitney
FR-19545-1

Vehicle

Fuel

Min. Consumption

Time Consumption Impulse
65 sec 4 Ib 2266.0 Ib-sec
Max. Consumption
Time Consumptiﬂ Impulse
65 sec 66 1b 3309.0 Ib-gsec
LOX
Min. Consumption
Time Consumption Impulse
330 sec 68 1b 2980.0 1b-sec
Max. Consumption
Time Consumption Impulse
330 sec 139 Ib 5960.0 |b-sec

0742C

Table 5-4. G Centaur 2nd-Burn Cooldown Estimates

Fuel NPSP Pump Duct Emptied Impulse
Time-sec 5 5 9 —
Min. Consumption - lb/engine — 1 4 205
Max. Consumption - lb/engine — 2 6 302
Time-sec 2 7 43 —
Min. Consumption - lb/engine — <1 17 728
Max. Consumption - lb/engine — 2 20 862
0742C
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SECTION 6.0
EXPANDED INLET TESTING BACKGROUND

The background of the expanded inlet testing is presented as it relates to engine starting.
More detail is presented in the “Cooldown Background” section.

For Atlas Centaur application, the pumps are prechilled before launch to provide cold pump
housing temperatures at prestart. Large cooldown areas provide high cooldown flows to rapidly
complete the conditioning of the pumps during prestart. The prechill allows the high cooldown
flows during prestart to provide quick conditioning of the pumps while the vehicle is under low
thrust and still within the gravity field.

For Shuttle Centaur (S/C) application, the vehicle is in orbit for an extended time before
engine start, and prelaunch prechill of the pumps and ducts would be fruitless. The prestart
sequence is the only conditioning provided to the engine. The necessity for rapid conditioning of
the pumps and ducts is removed because the vehicle is in orbit and immediate thrust is not
needed to resist a gravitational pull. The time spent in orbit prior to the firing may vary
significantly. There is heat transfer from the oxidizer to the fuel tank, from the sun into the
tanks, and from the tanks to space. Unknowns in these heat transfer relationships result in
predictions that the oxidizer tank may cool or heat during the orbit duration. Because the
oxidizer tank does not have vent capability while in orbit, the possible range of oxidizer supply
temperature and pressure increases with orbit duration. Therefore, the required oxidizer inlet
start envelope is a function of the maximum orbit duration for a given mission. Inlet condition
ranges were defined by General Dynamics Corp. for two vehicle types, the G and G-Prime
Centaurs.

Prior to this testing, the engine was qualified to operate over a limited range of inlet
conditions as expected for Atlas Centaur application. The “Expanded Inlet” test program was
conducted to define the RL10A-3-3A engine start characteristics over inlet condition ranges
defined for the G and G-Prime Shuttle Centaurs, and to define the RL10A-3-3B engine start
characteristics over inlet condition ranges defined for the G Shuttle/Centaur. Figure 6-1 shows
the previously qualified inlet start envelope along with the requested G and G-Prime Centaur
inlet start envelopes.

The engine demonstrated successful start characteristics over the expanded inlet conditions
for both mission types, completing the Expanded Inlet test series. A cooldown test series,
following the Expanded Inlet testing, revealed that pump conditioning could be accomplished
with less propellant consumption if cooldown flows are reduced and cooldown time increased.
The Expanded Inlet test series was rerun to define start characteristics of the engine using these
reduced cooldown flows and increased cooldown times. Following the rerun of the Expanded Inlet
test series, a qualification test series was run using the reduced cooldown flows and increased
cooldown time scheme.

For ease of communication, the testing prior to the cooldown series is said to use the “large”
cooldown area scheme, and the testing following the cooldown test series is said to use the
“small” cooldown area scheme.
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The large cooldown area scheme cools the oxidizer pump using a 0.34 in.% oxidizer flow
control valve area during prestart. This area reduces from 0.34 in.2 to a 0.05 in.? at the start
signal. The oxygen flows from the pump, through the oxidizer flow control valve, to the injector
and thrust chamber where it is exhausted into space. The fuel pump is cooled using a discharge
cooldown valve area of 0.51 in.2 and an interstage cooldown valve area of 0.61 in.2 during prestart.
At the start signal the discharge cooldown valve is closed, the interstage cooldown valve area is
reduced from 0.61 to 0.37 in.%, and the main fuel valve is opened. The interstage cooldown valve
closes completely as fuel pump discharge pressure rises during the start transient. The hydrogen,
passing through the two cooldown valves, is exhausted into space.

The small cooldown area scheme cools the oxidizer pump using a 0.050 in.? oxidizer flow
control valve area during prestart which remains unchanged at the start signal. The oxygen
passes from the pump and oxidizer flow control valve and continues through the injector and
thrust chamber and is exhausted into space. The fuel pump is cooled with a discharge cooldown
valve area of 0.51 in.2 and an interstage cooldown valve area of 0.37 in.? during prestart. At the
start signal the discharge cooldown valve closes, the interstage cooldown valve remains at 0.37
in.2, and the main fuel valve is opened. The interstage cooldown valve closes completely as fuel
pump discharge pressure rises during the start transient. The hydrogen, passing through the two
cooldown valves, is exhausted into space.

The areas quoted above for the fuel pump interstage and discharge valves are geometric
areas. The corresponding effective areas, used in the cooldown section, are as follows:

Discharge valve area  0.51 geometric, 0.30 effective
Interstage valve area  0.61 geometric, 0.36 effective (full open)
Interstage valve area  0.37 geometric, 0.18 effective (mid stroke).

Starting impulse has traditionally been defined as the integral of thrust vs time during the
first three seconds of the run. However, with expanded inlet start envelopes, the engine
occasionally requires more than three seconds to accelerate to 90 percent thrust. In general,
conditions conducive to slow acceleration times are low fuel pump inlet pressure (FPIP), high
oxidizer pump inlet pressure (OPIP) or high oxidizer net positive suction pressure (ONPSP), and
the large cooldown area scheme is slower than the small cooldown area scheme. To accommodate
acceleration times greater than 3.0 seconds, starting impulse to 4.0 or 5.0 seconds would have to
be quoted. Since the G and G-Prime Centaur inlet start envelopes yield times to accelerate which
are less than 3.0 seconds except for a very small corner of the G inlet start envelope when the
large cooldown area scheme is used, starting impulse to 3.0 seconds is maintained and
acceleration times slower than 3.0 seconds are omitted for the starting impulse correlations.

All tests were conducted with stand inlet ducts, no turbopump blanket, and non-evacuated
cooldown valves. .
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SECTION 7.0
EXPANDED INLET TEST RESULTS AND ANALYSIS

Figure 7-1 shows actual and predicted acceleration times for a S/C engine with the large
cooldown (C/D) area scheme, in either the -3A or -3B configuration. The run-to-run and engine-
to-engine variations in time-to-accelerate are greater than the engine configuration differences,
therefore the predicted acceleration equation applies to either configuration. The actual
acceleration times (open symbol) and predicted acceleration times (solid symbol) are plotted as a
function of fuel pump inlet total pressure (FPIP), with a background of constant oxidizer net
positive suction pressure (ONPSP) curves. The predicted acceleration times and the constant
ONPSP curves were determined with the indicated prediction equation. Vertical lines have been
drawn from the actual acceleration time symbol to the predicted acceleration time symbol, and
the length of the line shows the prediction error. As indicated on the figure the time-to-accelerate
equation was generated during fifty-four tests involving three engines. This equation must be
incorporated in Specification 2289B, Volume I, after being shifted to account for evacuated
cooldown valves and the nominal production acceleration time. Previous testing has indicated
that the engine will accelerate 0.095 second slower with the fuel cooldown valves vented to a
vacuum compared to their being vented to 14.7 psia.

Figure 7-2 presents starting impulse as a function of time-to-accelerate for a S/C engine
using the large cooldown area scheme in both the -3A and -3B configurations. An additional
projected impulse was used to anchor each curve at zero time-to-accelerate. If the engine could
accelerate instantly, the starting impulse would be its steady-state thrust times 3.0 seconds
(49,500 Ibf-sec mx for a -3A configuration and 45,000 lbf-sec for a -3B). The equation of the curve
through the data is given. The starting impulse correlations reveal that a 0.1 second change in
time-to-accelerate will change starting impulse 1491 Ibf-sec for a -3A configuration and 1377 lbf-
sec for a -3B. The equation for the RL10A-3-3A configuration must be incorporated in
Specification 2289B, Volume 1.

Figure 7-3 shows actual and predicted acceleration times for a S/C engine using the small
cooldown areas scheme in either -3A or -3B configuration. The run-to-run and engine-to-engine
variations in time-to-accelerate are greater than the engine configuration differences, therefore
the predicted acceleration equation applies to either configuration. The actual acceleration times
{open symbol) and predicted acceleration times (solid symbol) are plotted as a function of FPIP,
with a background of constant OPIP curves. Vertical lines have been drawn from the actual
acceleration time symbol to the predicted acceleration time symbol, and the length of the line
shows the prediction error. As indicated on the figure the time-to-accelerate equation was
generated using thirty two tests involving two engines. This equation must be incorporated in
Specification 2289B, Volume 2 and Specification 2295 after being shifted to account for
evacuated cooldown valves. Previous testing has indicated that the engine will accelerate 0.095
second slower with the fuel cooldown valves vented to a vacuum compared to their being vented
to 14.7 psia.

Time-to-accelerate for engines with small cooldown areas correlated with OPIP, rather
than ONPSP as it did for the large cooldown area scheme. There are two likely reasons.
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‘lOpen symbols indicate actual acceleration{ "~~~ 1"~
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Figure 7-3. -3A and -3B Predicted Acceleration-Shuttle Centaur With Small Cooldown
Areas, No Prechill
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The dominant reason deals with increased chamber pressure which back-pressures the
turbine and increases time-to-accelerate. Chamber pressure early in the transient is largely a
function of oxidizer flow. Oxidizer flow is regulated by the oxidizer flow control valve area and
the NPSP at the valve. If the NPSP is high at the valve, the flow is a function of NPSP; however
if the NPSP is low or two-phase at the valve the flow is a function of pressure.

For a given oxidizer pump inlet pressure and temperature and a given pump housing
temperature, a high flow rate would pass through the pump with little heat-per-pound being
added. This would yield about the same NPSP at the oxidizer flow control valve as existed at the
pump inlet. Therefore for the high cooldown area scheme, the valve NPSP is high and flow is a
function of NPSP. In contrast, a low flow rate would pass through the pump with significant
heat-per-pound being added and the NPSP at the oxidizer flow control valve would be low or
two-phase. Therefore, for the low cooldown area scheme, the valve NPSP is low or two-phase and
flow is a function of pressure. In conclusion, the time-to-accelerate for the large cooldown area
scheme will correlate with ONPSP and the time-to-accelerate for the small cooldown area
scheme will correlate with OPIP.

A secondary reason as to why time-to-accelerate may correlate with OPIP relates to the
temperature of the fuel at the turbine inlet early in the start transient. The oxidizer cooldown
flow, having cooled the pump, continues through the thrust chamber and is exhausted to space.
The oxygen is very cold as it passes through the thrust chamber and cools the chamber tubes.
The hydrogen, after start signal and in route to the turbine, passes through the thrust chamber
tubes. Cold chamber tubes lead to slow acceleration by reducing heat transfer to the fuel early in
the start transient. The small cooldown area scheme used cooldown times which were scheduled
as a function of OPIP (165 seconds of cooldown at high OPIP and 250 seconds at low OPIP), see
Figure 7-4. Therefore, the influence on time-to-accelerate of cooling the chamber during oxidizer
cooldown will appear to correlate with OPIP.

Because both effects correlate with OPIP, it is impossible to separate the dominating effect
that backpressuring the turbine has on time-to-accelerate from the secondary effect that cooling
the chamber has on time-to-accelerate.

Figure 7-5 presents starting impulse as a function of time-to-accelerate for a S/C engine
using the small C/D area scheme in both the -3A and -3B configurations. As before, an additional
projected impulse was used to anchor each curve at zero time-to-accelerate. The equation of the
curve through the data is given. The correlation reveals that a 0.1 second change in time-to-
accelerate will change starting impulse approximately 1540 lbf-sec for a -3A configuration and
1400 Ibf-sec for a -3B configuration. The equation for the RL10A-3-3A configuration must be
incorporated in Specification 2289B, Volume 2, and the equation for the RL10A-3-3B
configuration must be incorporated in Specification 2295.

Figure 7-6 shows the predicted acceleration envelope using the small cooldown area scheme
for the G Centaur vehicle utilizing either the RL10A-3-3A or -3B configurations, and for the
G-Prime Centaur vehicle utilizing the RL10A-3-3A configuration.

Figure 7-7 shows the three-second starting impulse for Shuttle/Centaur operation, using
the small cooldown area scheme, that would result from the predicted acceleration times in
Figure 7-6. The G Centaur starting impulse range is indicated by the full length of the -3A and
-3R curves, and the G-Prime Centaur range is indicated by symbols.
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Figure 7-8 shows the predicted acceleration envelope using the large cooldown area scheme
for the G Centaur vehicle utilizing either the RL10A-3-3A or -3B configurations, and for the
G-Prime Centaur vehicle utilizing the RL10A-3-3A configuration.

Figure 7-9 shows the three-second starting impulse for Shuttle/Centaur operation, using
the large cooldown area scheme, that would result from the predicted acceleration times in
Figure 7-8. The G Centaur range is indicated by the full length of the -3A and -3B curves, and the
G-Prime Centaur range is indicated by symbols.

The test data used in defining the starting characteristics of the engines is presented in
Table 7-1, large cooldown area scheme, and Table 7-2, small cooldown area scheme.
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Table 7-1. Engine Test Data-Large Cooldown Area Scheme-RL10A-3-3A and RL10A-3-3B

FNPSP OPIP LOX Start
FPIP  FPIT at Start OPIT ONPSP C/D Time TTA Impulse
Engine Run No. (psia) (°R) (psid) (psia) (°R) (psid) (sec) (sec) _(Ibf-sec) Config

XR101-2 11.01 32.2 39.6 85 53.5 179.3 179 50 1.866 21039 ~3A
12.01 32.0 38.1 13.1 52.4 172.5 26.9 50 2.233 16114 -3A

13.01 28.3 39.5 5.0 53.0 1724 276 50 2.639 9712 -3A

14.01 28.4 379 10.0 4.1 172.2 189 50 2.296 14638 -3A

16.01 31.6 37.9 13.2 46.4 179.4 10.6 50 1.800 21826 -3A

18.01 31.8 379 134 271 167.0 8.0 50 1.583 25618 —3A

19.01 24.5 38.5 4.4 414 1674 219 50 3.216 1755 -3A

20.01 24.7 38.8 3.6 41.0 167.3 21.6 50 2.909 8731 -3A

2201 24.4 38.2 5.2 27.2 167.9 71 50 2,015 18851 -3A

XR101-3 25.01 28.9 38.1 10.0 39.9 1675 20.3 50 2.143 17420 -3A
26.01 24.5 37.7 6.8 26.8 1679 6.8 80 2.251 15158 —-3A

27.01 24.7 38.0 6.2 26.7 167.8 6.8 50 1.988 19333 -3A

32.01 24.7 38.8 3.8 69.1 186.2 20.4 50 2913 4937 -3A

33.01 24.7 38.7 4.1 69.2 185.9 21.1 5 2.495 13696 -3A

41.01 24.6 38.8 34 26.8 167.7 6.9 6 1.872 22040 -3A

43.01 24.5 38.6 4.0 26.7 168.1 6.4 6 1.958 20917 ~-3A

44.01 24.6 378 6.3 27.0 167.5 7.3 80 2.140 17166 -3A

45.01 24.4 383 49 31.6 1717 7.1 50 2.079 17564 -3A

XR102-1 1.02 316 40.0 8.5 53.4 179.1 8.1 40 1.992 19900 -3A
2.01 27.6 388 8.5 472 1771 15.1 40 2.220 16313 -3A

3.01 29.8 389 8.4 489 176.0 18.5 35 2.046 19047 -3A

4.01 31.8 38.2 12.6 52.3 1724 26.9 35 2.308 15014 -3A

XR102-1A 5.01 28.2 37.7 104 43.8 173.0 176 50 2.108 17045 -3A
6.01 28.2 39.6 4.5 52.9 1729 26.8 50 2.368 14103 -3A

7.01 31.5 37.7 14.0 46.2 180.6 83 50 1.648 24709 -3A

8.01 314 37.6 13.9 45.9 179.9 9.2 50 1.588 25593 -3A

9.01 31.8 38.8 10.7 69.4 186.1 20.9 50 2.013 17847 -3B

16.01 31.8 39.8 7.4 69.7 186.1 21.2 50 1.820 20787 -3B

11.02 28.6 40.1 3.2 556.7 186.3 6.8 50 1.797 20333 -3B

12.01 248 389 34 69.1 185.9 21.0 50 3.143 1979 -3B

14.02 24.4 375 71 27.2 168.3 6.7 50 2.270 13421 -3B

15.01 24.5 38.8 3.3 27.2 168.0 7.0 50 2.358 12149 -3B

17.01 316 38.6 11.2 275 168.4 6.9 50 1.806 20557 -3B

19.01 24.6 39.0 29 41.2 167.9 21.1 50 3.730 1644 -3B

XR102-2 45.04 24.5 39.1 2.5 319 171.2 8.0 50 2.734 7882 -3B
46.01 24.7 39.3 20 31.9 171.2 8.0 50 3.287 1566 -~-3B
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Table 7-1. Engine Test Data-Large Cooldown Area Scheme-RL10A-3-3A and RL10A-3-3B

(Continued)
FNPSP OPIP LOX Start
FPIP FPIT at Start OPIT ONPSP C/D Time TTA Impulse
Engine Run No. (psia) (°R) (psid) (psia) (°R) (psid) (sec) _(sec) (Ibf-sec) Config
XR105-1 1.01 29.7 38.6 9.3 49.2 175.9 18.9 40 1.996 19874 -3A
2.01 31.9 39.3 9.2 52.5 179.0 174 40 1.922 20865 -3A
4.01 31.4 37.6 13.9 52.8 173.0 28.6 40 2.208 15079 ~3A
6.01 28.6 39.7 46 52.4 173.5 25.5 40 2.636 9768 -3A
8.01 29.1 317 11.3 42.7 169.2 21.2 40 2.420 12866 -3A
9.01 31.6 40.0 6.5 68.7 186.5 194 45 1.918 20660 -3A
10.01 24.7 39.1 2.7 42.8 170.5 20.4 40 3.229 1739 -3A
XR105-1A 11.01 28.8 39.0 71 46.5 175.5 16.8 40 2.042 18527 -3A
13.01 284 39.8 4.0 52.9 173.5 26.0 40 2.588 10282 -3A
XR105-1B 14.01 28.5 40.0 34 549 185.0 8.7 40 1.737 21764 -3A
15.01 28.6 40.0 3.5 56.9 186.0 8.6 40 1.802 21522 -3A
16.01 315 37.5 14.2 449 178.8 10.1 40 1.641 24337 —-3A
17.03 31.8 375 14.5 28.4 169.4 6.7 50 1.535 26258 -3A
18.01 32.1 37.4 15.1 45.4 179.2 9.9 50 1.761 23140 -3A
20.01 28.6 39.7 46 57.0 185.6 9.6 50 1.926 18367 -3B
21.01 31.7 39.7 7.7 70.1 186.3 21.2 50 2.104 17445 -3B
23.01 28.8 37.3 12.1 40.7 167.3 213 50 2.350 13057 -3B
24.01 315 385 114 215 168.5 6.8 50 1.789 20344 -3B
25.01 24.7 39.0 3.0 27.7 168.2 73 50 2.178 14689 -3B
26.01 24.6 374 7.6 27.4 168.3 6.9 50 2.193 14372 -3B
27.01 24.7 38.7 20.7 40.8 168.1 20.5 50 3.428 1613 -3B
30.01 24.6 38.8 3.5 40.5 168.2 20.1 50 2.998 3755 -3B
0818C
Table 7-2. Engine Test Data-Small Cooldown Area Scheme-RL10A-3-3A and RL10A-3-3B
FNPSP OPIP LOX Start
FPIP  FPIT at Start OPIT ONPSP C/D Time TTA Impulse
Engine Run No. (psia) (°R) _(psid) _(psia) (°R) (psid) (sec) (sec) (ibf-sec) _Config
XR101-4A 83.04 28.4 39.6 4.6 535 186.4 44 175 1.511 27680 3A
85.01 24.5 39.2 2.0 68.1 186.3 19.1 165 2.529 10670 3A
87.01 24.2 39.0 2.3 30.7 1724 53 250 2.014 19478 3A
88.01 24.2 38.2 4.8 41.1 168.4 20.5 215 1.747 23945 3A
90.01 314 38.6 11.0 54.1 186.5 48 176 1.373 28479 3A
91.01 294 38.5 9.0 46.9 1784 127 220 1.466 27696 3A
92.01 29.8 38.3 10.2 324 172.6 6.8 250 1.465 27954 3A
94.01 28.4 39.2 5.7 53.6 185.6 6.2 175 1.589 22952 3B
95.01 24.2 38.3 4.7 67.2 185.1 20.6 165 2.302 13159 3B
97.01 24.3 38.1 5.3 41.7 168.4 21.1 215 1.960 18462 3B
99,01 314 38.7 105 31.0 171.6 6.6 250 1.462 25555 3B
101.01 24.4 38.6 39 30.9 1716 6.5 250 1.7 21075 3B
102.01 31.3 38.8 10.2 54.9 185.5 76 175 1.485 24550 3B
103.01 29.7 38.5 9.6 46.0 1779 12.5 220 1.481 24796 3B
104.01 314 388 10.2 31.0 1718 6.3 250 1.407 26247 3B
106.01 313 38.7 10.6 30.7 171.6 6.2 250 1.467 25444 3B
109.01 31.3 38.7 10.6 30.8 171.6 6.4 250 1.395 26430 3B
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. (Continued)
FNPSP (QPIP LOX Start
FPIP FPIT at Start OPIT ONPSP C/D Time TTA Impulse
_7 Engine Run No. (psia) (°R) (psid) __ (psia) (°R) (psid) (sec) (sec) (Ibf-sec) Config
XR103-2 2.01 27.5 38.8 8.5 443 175.9 14.0 220 1.809 19790 3B
3.01 27.8 38.7 6.9 44.1 175.8 13.9 220 1.757 20788 3B
4.01 27.4 38.7 6.6 44.2 175.8 14.1 220 1.799 20066 3B
— 5.01 2717 389 6.2 44.0 175.8 13.9 220 1.722 21365 3B
6.01 315 39.4 8.4 68.6 185.3 21.8 165 1.768 20984 3B
7.01 24.5 39.2 1.9 66.1 184.7 20.3 165 2.432 11438 3B
- 9.01 314 39.2 9.1 68.6 185.3 21.6 165 1.731 21562 3B
— 11.01 314 39.4 8.4 316 1713 75 250 1.523 24356 3B
~ 18.01 27.5 38.7 6.7 44.3 176.3 134 220 1.832 19731 3B
21.01 277 39.0 6.0 44.1 176.0 136 220 1.724 21450 3B
24.01 27.6 38.8 6.3 44.2 1759 139 220 1.772 20761 3B
25.01 27.4 38.7 6.6 44.2 175.8 14.0 220 1.797 20284 3B
- 26.01 276 38.9 6.2 4.1 1758 139 220 1.707 21534 3B
27.01 27.6 38.7 6.8 44.1 175.7 14.1 220 1.731 21274 3B
B 28.01 27.4 38.9 5.9 4.5 175.6 14.6 220 1.749 20959 3B
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APPENDIX A

To perform accurate cooldown predictions of the RL10 Shuttle Centaur inlet ducts, the

RL10 Atlas Centaur cooldown prediction deck was modified. The inlet duct portion of the deck

- was altered to reflect the differing dimensions of the ducts and gimbals. Fuel and oxidizer

prevalves, which are not present in the Atlas Centaur configuration, were added upstream of the

inlet lines. Two prediction models were configured, one that represented the ducts and valves of

the ground test configuration and another that represented the flight configuration. The ground

test configuration was used to check the formulation of the prediction program, and the flight
. configuration was used to make predicted cooldown times and consumptions for flight.

The oxidizer pump section of the deck was modified to allow caiculation of metal
- temperatures at various locations throughout the oxidizer pump housing. Previously, the housing
was treated as a single mass with one bulk metal temperature, which was adequate for the Atlas
- Centaur configuration where the bulk metal temperature of the oxidizer pump was below 400°R.
This configuration proved to be inadequate in predicting the oxidizer pump metal temperatures
for Shuttle Centaur cases where the bulk metal temperatures are approximately 500°R at the
start of cooldown and where different areas of the pump do not experience the same flowrate as
the average pump flowrate. The revised oxidizer pump model includes convective heat transfer to
five portions of the pump. The pump was divided circumferentially into four quarters plus the
diffuser. Each of the four quarters includes conductive heat transfer from the pump flow surfaces
to the pump external surface where the flight temperature probe will be located. A cross section
showing the five axial nodes is shown in Figure A-1. Convective heat transfer from metal to fluid
occurs at node 2. Conductive heat transfer occurs between nodes 1 and 2, 2 and 3, etc.

{1

- On the fuel side, changes included adding a prevalve at the entrance to the inlet duct,
updating the masses and surface areas of the inlet ducts to those of the Shuttle Centaur
— configuration, and adding conduction between the gimbals and tubes that make up the duct.

Adjustments were made to both the fuel and oxidizer sides of the ground test prediction
deck to compensate for peculiarities in propellant flow due to the low flowrates and one-G gravity
field of these tests.

In the horizontal sections of the oxidizer ducts, fluid did not completely wet the surface of
the inlet duct. This caused the bottom of the oxidizer ducts to cool faster than the upper surfaces,
which were exposed only to oxygen vapor. This can be seen in Figure A-2. To model this, the
surface areas of the horizontal duct surfaces in the prediction deck were reduced by half when the
- reduced GMRYV flow area was being used. During the testing with LOX pump rig B50C041, the

; duct section which was previously in a horizontal position was in a vertical orientation, and did
= not display the same characteristics (Figure A-3).

On the fuel side, when using the small interstage cooldown area, the fuel in the inlet ducts
showed circulating flow, with warm fuel from the bottom of the duct travelling upward against
the flow and exiting through the facility dumpline located just upstream of the prevalve. This
caused the duct to cool faster than expected because of the additional heat the fluid picked up as
it travelled up the duct, and because of the greater amount of cool fluid drawn into the duct. This
was adjusted for in the simulation by allowing 0.4 pound per second of additional flow to pass
through the inlet duct. This additional flow was allowed when the prevalve was opened at the
same time as the inlet valve, and the small interstage cooldown area was being used.
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PHYSICAL SYSTEM

CONDUCTION MODEL

The amount of conduction between the various pump components is calculated
by equating the heat contained within each component with the amount of heat
transferred across each boundary between parts. A differential equation is
written for each part interface, and they are solved simultaneously to
determine the quantity of heat transferred between each part and the result-
ing temperature for each part.

FD 320366

Figure A-1. Revised Oxidizer Pump Model
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The oxidizer and fuel flows calculated by the RL10 cooldown deck were compared to actual
flow rates and consumptions for both the oxidizer and fuel sides. Calculated flowrates compared
well with the actual measured rates (Figures A-4 and A-5).

10—
i LOX05016
2 XR101-4 Run 50.16 Shutlle Centaur Flight Duct C  X101045016
— WL Predicted Lox Flow

81— == WLOX Lox Flow from Run 50.16

Oxidizer
Flow Rate -

i
Ib/sec s _I‘_

0 10 20 30 40 50 60 70 80 90
Time from Prestart Signal - sec

FO 320307
Figure A-4. Comparison of Predicted and Test Run LOX Flow Rate
25— () XR101-4 Run 50.16 Shuttle Centaur Flight Duct
] FIT ST
— W Predicted Fuel Flow
20— i === WF Run Fuel Flow from Run 50.16
:\
\
15 ‘ | “ (]
)
Fuel Flow | | N " ﬂl‘ C?’\ ,’
Rate - Ib/sec | i ,‘“' / I\'\
1.0 |
0.5
00 l I
0 10 20 30 40 50
Time from Prestart Signal - Sec
FD 320308

Figure A-5. Comparison of Predicted and Test Run Fuel Flow Rate
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The oxidizer flow ducts bringing oxidizer to the engine have
been broken into four tubes, three gimbals, an inlet valve, and
the tube insulation. The mass of flanges, bolts and similar
hardware have been included in the mass of the tubes or gimbals.

Calculations of convective and conductive heat transfer, f£fluid
flow, temperature and pressure are made at each station for every
time increment.

FD 320367

Figure A-6. Oxidizer Side Ducts
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side has been divided into four tubes, three gimbals,
valve, and tube insulation, with the initial tube having
leg. The masses of the flanges, bolts, etc. have been
in the mass of the tubes and gimbals.

oxidizer side, conductive and convective heat transfer,

fluid flow, temperature and pressure calculations were performed
at each station.

FD 320388

Figure A-7. Fuel Side Ducts
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The oxidizer enters the segmented pump with known temperature
and pressure. Conductive and convective heat transfer,
pressure, temperature, and fluid flow are calculated.

After leaving the pump, the flow enters the oxidizer flow
control valve(made up of the GMRV and PU valves) where once
again heat transfer, fluid flow, pressure and temperature
calculations are performed.

When the oxidizer leaves the oxidizer flow control, it enters
the oxidizer line between the oxidizer flow control and the
injector. Here, another set of heat transfer, fluid flow,
pressure and temperature calculations are done.

The fluid enters the injector where the same heat transfer,

fluid flow, pressure and temperature calculations are
performed.

FD 320369

Figure A-8. Oxidizer Flow Schematic
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The pressure and temperature of the fuel entering the
first stage pump are known. Heat transfer from this first
stage pump to the fluid is calculated as well as the flow,
pressure, and temperature. The fluid now moves to the
interstage cooldown valve and the second stage pump.

As the fuel leaves the first stage pump, socme flow enters
the interstage cooldown valve and is exhausted to ambient
conditions. The remainder of the fuel enters the second
stage pump where heat transfer, pressure, temperature, and
fluid flow are calculated.

During the cooldown process, all of the fuel is édiverted to

ambient conditions. A flow calculation across the cocoldown
discharge valve is done.

FD 320370

Figure A-9. Fuel Flow Schematic
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The cooldown prediction deck determines the magnitude of convective heat
transfer by utilizing the component surface areas, masses, flow areas, aver-
age bulk metal temperature, as well as the fluid flowrate and average bulk
— temperature to determine a film coefficient for convective heat transfer.

The heat transfer process is as follows:

1. The fluid properties are used along with the present metal temperature
and a predicted metal temperature to determine a heat transfer coeffi-
cient,

2. The coefficient is wused to calculate the quantity of heat removed from
the metal part using the part surface area, fluid temperature, and time
duration.

3. The calculated heat Tloss is wused with the part's specific heat and
) starting temperature to determine the temperature decrease which would
ha occur, and the part's average temperature for the time period.

4. The calculated average temperature is compared to the average temper-
ature used to calculate the heat transfer coefficient. If the two dif-
fer, a new predicted temperature is used to calculate a new coefficient,
and the process is repeated until the predicted heat transferred results
in the same average metal temperature as that used to find the coeffi-
cient.

FD 320373

Figure A-12. Convective Heat Transfer Model
A-12

0832C




Pratt & Whitney

FR-19545-1

JuoWISUDLIY IS JoZIPIXQ Y92 UMOPIOO) OITH E1-Y 2]

v.Le02e ad

"JWYS 3HL

JYV SININOJWOI 11V SSON¥IV SMOTI4 TILNN SFUNSSIYd SITYYA  "S3UNSS3Hd
NO 3INVIVE 3LIWS HLIM 3WIL LX3N ¥04 M0OT4 S3LVINITVI N3HL - MO74
INBW3NINI 3WIL SNOIA3Yd NO Q3SVE H¥I4SNVHL LV3IH S3LVINITIVI WY¥30dd

ff— pp

(AT

kg J
d ‘nl.l]
-

miz

BA[DA [OJU0) JZTIPEXD Bupenoy o{ [ndup

A-13



S

{1

{

rl I

Pratt & Whitney
FR-19545-1

FLOWS CALCULATED BY VARYING PRESSURES UNTIL TOTALS MATCH

The fluid flowrates are balanced by varying all component upstream and down-
stream pressures until the flowrates calculated are either equal to one
another as on the oxidizer side, or the sum of the exit flows are equal to
the inlet flow as on the fuel side. The fluid temperatures and enthalpies
used for the flow calculations are determined by the heat transfer calcu-
lations for the system.

FD 320375

Figure A-14. RL10 Cooldown Deck Fuel Side Arrangement
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